Yahoo Hỏi & Đáp sẽ ngừng hoạt động vào ngày 4 tháng 5 năm 2021 (Giờ Miền Đông) và từ ngày 20 tháng 4 năm 2021 (Giờ Miền Đông), trang web Yahoo Hỏi & Đáp sẽ ở chế độ chỉ đọc. Các thuộc tính hoặc dịch vụ khác của Yahoo hay tài khoản Yahoo của bạn sẽ không có gì thay đổi. Bạn có thể tìm thêm thông tin về việc Yahoo Hỏi & Đáp ngừng hoạt động cũng như cách tải về dữ liệu của bạn trên trang trợ giúp này.
Does ( a/b-1/b², a/b+1/b² ) cover the real axis?
Let a real number, z, be given. Does there always exist an infinite sequence, {bₓ}, of natural numbers such that some multiple of 1/bₓ is closer than 1/(bₓ)² to z.
Put otherwise: is there a infinite sequnce of naturals, bₓ, such that |z-a/bₓ|<1/(bₓ)² for some integer, a.
This question is a follow up upon the question here:
The following PDF contains more info:
Thanks to both of you (gianlino, Nemo Captain).
I will look the answer from Nemo Captain through before we reach the deadline for this thread (in 16 hours). If you are right (I suppose you are), I believe it shows an interesting property for lines with irrational slopes:
Let z be irrational and consider lines of the form y=z*x+b. If we consider the set of all such lines with the same irrational number, z, through lattice points, then b is in a dense subset of the real axis, ie. you cannot find any interval (however small it may be) on any side of one line y=z*x+b1 through some lattice point without infinitely many other lines y=z*x+b each through some lattice point somewhere in the plane.
3 Câu trả lời
- Nemo CaptainLv 51 thập kỷ trướcCâu trả lời yêu thích
The other example of this, if z=√n, where n - integer but in form not a², with a-positive integer.
Then the Pell's equation:
x²-ny²=1
have infinitely positive solutions.
And the number x/y does satisfy:
|x/y-√(n)| = 1/y² . 1/(x/y+√n) < 1/y².
More details about this:
http://en.wikipedia.org/wiki/Pell's_equation.
--------------------
As gianlino's suggestion, now I'm training my self with continued fraction with hoping that I'd solve this question.
-------------------
Finally I've solved it (by reading :
http://en.wikipedia.org/wiki/Continued_fraction
somethings I will type here is only the repeating of wikipedia.
For any irrational z, then there is always undefinite continued fraction
z = (a(0); a(1), a(2), ..., a(n), ....)
That a(i) are positive integers.
And we call:
h(n)/k(n) = (a(0); a(1), a(2), ..., a(n))
Then if we assume
h(-2) = 0, k(-2) = 1,
h(-1) = 1, k(-1) = 0,
by inducing, we can prove the theorem 1,and then we have these:
h(n+1) = a(n+1) . h(n) + h(n-1)
k(n+1) = a(n+1) . k(n) + k(n-1)
h(n)/k(n) - h(n-1)/k(n-1) = (-1)^(n-1) / (k(n).k(n-1)),
then we have the formula:
z = a(0) + ∑(n=0->+∞) (-1)^n / [k(n).k(n+1)].
Now let prove the theorem 5 (or exactly a half of it):
|z-h(n)/k(n)| < 1/[k(n).k(n+1)] (*)
With
h(n)/k(n) = a(0) + ∑(i=0->(n-1)) (-1)^i/[k(i).k(i+1)]
|z-h(n)/k(n)| = | ∑(i=n->+∞) (-1)^i / [k(i).k(i+1)] |.
By the formula:
k(i+2) = a(i+2).k(i+1) + k(i) > k(i+1), then
1/[k(i).k(i+1)] > 1/[k(i+1).k(i+2)] for every i ≥ 0.
then
| ∑(i=n->+∞) (-1)^i / [k(i).k(i+1)] |
= {1/[k(n).k(n+1)] - 1/[k(n+1).k(n+2)]} + {1/[k(n+2).k(n+3)] - 1/[k(n+3).k(n+4)]} + ... + {1/[k(n+2i)k(n+2i+1)] - 1/[k(n+2i+1).k(n+2i+2)]} + ...
< {1/[k(n).k(n+1)] - 1/[k(n+1).k(n+2)]} + {1/[k(n+1)k(n+2)] - 1/[k(n+2)k(n+3)]} + {1/[k(n+2).k(n+3)] - 1/[k(n+3).k(n+4)]} + {1/[(k(n+3)k(n+4)] - 1/[k(n+4)k(n+5)]} + ... + {1/[k(n+2i)k(n+2i+1)] - 1/[k(n+2i+1).k(n+2i+2)]} + {1/[k(n+2i+1)k(n+2i+2)] - 1/[k(n+2i+2)k(n+2i+3)]} +...
= 1/[k(n).k(n+1)] - 1/[k(n+1).k(n+2)] + 1/[k(n+1)k(n+2)] - 1/[k(n+2)k(n+3)] + 1/[k(n+2).k(n+3)] - 1/[k(n+3).k(n+4)] + 1/[(k(n+3)k(n+4)] - 1/[k(n+4)k(n+5)] + ... + 1/[k(n+2i)k(n+2i+1)] - 1/[k(n+2i+1).k(n+2i+2)] + 1/[k(n+2i+1)k(n+2i+2)] - 1/[k(n+2i+2)k(n+2i+3)] +...
= 1/[k(n).k(n+1)] + {- 1/[k(n+1).k(n+2)] + 1/[k(n+1)k(n+2)]} + { - 1/[k(n+2)k(n+3)] + 1/[k(n+2).k(n+3)]} + { - 1/[k(n+3).k(n+4)] + 1/[(k(n+3)k(n+4)]} + { - 1/[k(n+4)k(n+5)] + ... + 1/[k(n+2i)k(n+2i+1)]} + { - 1/[k(n+2i+1).k(n+2i+2)] + 1/[k(n+2i+1)k(n+2i+2)]} + { - 1/[k(n+2i+2)k(n+2i+3)] +...
= 1/[k(n).k(n+1)] + 0 + 0 + 0 + 0 + .... + 0 + 0+ ...
= 1/[k(n).k(n+1)].
that means:
(*) exactly.
And we have:
|z - h(n)/k(n)| < 1/[k(n).k(n+1)] < 1/k(n)².
|z-h(n)/k(n)| < 1/k(n)².
With z- any given irrational.
That menas there always exists an infinite sequence, {bₓ}, of natural numbers such that some multiple of 1/bₓ is closer than 1/(bₓ)² to z. (In number theory, it's called the Dirichlet's theorem).
-----------------
Even more, the Hurwitz's theorem:
http://en.wikipedia.org/wiki/Hurwitz's_theorem_(nu...
It told that:
( a/b-1/(√5.b²), a/b+1/(√5.b²) ) cover all the real axis.
And more about Langrange numbers:
http://en.wikipedia.org/wiki/Hurwitz's_theorem_(nu...
------------------
:)
Maths is so beautiful!
- gianlinoLv 71 thập kỷ trước
This seems to be related to continued fractions. But your constant 1 may be too ambitious; at least I think I remember that there is an explicit constant K so that
( a/b-K/b², a/b+K/b² ) cover the real axis. Anyway this is a very well studied topic. So either you solve it for fun and for yourself, or you look up the litterature on continued fractions.
(Các) Nguồn: http://en.wikipedia.org/wiki/Continued_fraction - widdisonLv 45 năm trước
Multiply by potential of a + b + c: (a + b + c)(a million/a) + (a + b + c)(a million/b) + (a + b + c)(a million/c) = a million a/a + b/a + c/a + a/b + b/b + c/b + a/c + b/c + c/c = a million a million + b/a + c/a + a/b + a million + c/b + a/c + b/c + a million = a million (b + c)/a + (a + c)/b + (a + b)/c = -2 ... no longer likely particular what you're after...? And what do you mean "2 of those numbers are opposite"?